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ABSTRACT

The study aimed to synthesise and evaluate the efficacy of calcium oxide (CaO) and zinc oxide (ZnO) nano-suspensions, in con-
junction with adjuvants, on the mycelial growth of Neoscytalidium dimidiatum, a notable fungal pathogen impacting pistachio
trees in Iran. The study tackles a significant agricultural challenge by exploring eight different treatments, including both nano
and pure forms of calcium oxide (CaO) and zinc oxide (ZnO), as well as polyethylene glycol, peracetic acid, and copper oxychlo-
ride. The results indicated a notable reduction in mycelial growth, particularly with the zinc oxide nanosuspension, especially
when used in combination with peracetic acid, which revealed a synergistic antifungal effect. Further research is necessary to

assess the field applications of these treatments for sustainable plant disease management.

1 | Introduction

Pistachio (Pistacia vera, Anacardiaceae) is amongst the most
widely cultivated nut crops in Iran. According to the Food and
Agriculture Organisation (FAO 2018), Iran stands as one of
the leading pistachio-producing countries globally, generating
approximately 315,000 metric tons from a cultivation area of
457,000ha. However, pistachio trees are susceptible to various
fungal pathogens that can significantly diminish their produc-
tivity. Amongst these pathogens, Neoscytalidium dimidiatum has
emerged as a significant fungal trunk pathogen, resulting in con-
siderable economic losses in pistachio orchards (Sohrabi 2020;
Dervis et al. 2019). Furthermore, the absence of effective long-
term control strategies complicates efforts to mitigate its adverse
effects on both tree health and yield (Guney et al. 2022; Nouri,
Lawrence, et al. 2018). Members of the Botryosphaeriaceae
family (Theiss. & P. Syd., Ascomycota, Botryosphaeriales) have

been identified as endophytes, parasites, and saprophytes on a
diverse range of plant species worldwide (Punithalingam 1980;
Arx 1987; Crous et al. 2006; Slippers et al. 2007). Most species
within this family are recognised as causal agents of various
plant diseases, including fruit rots, leaf spots, dieback, branch
and trunk cankers, bud necrosis, wood discoloration, de-
cline, and the eventual demise of affected trees (Van Niekerk
etal. 2006; Slippers et al. 2007). Previous studies have shown that
certain species of Botryosphaeriaceae pose a significant threat
to pistachio trees in various countries (Michailides 1991; Ma
et al. 2002; Armengol et al. 2008; Inderbitzin et al. 2010; Moral
etal. 2010; Chen et al. 2014, 2015), including Iran (Sohrabi 2020).
Neoscytalidium dimidiatum (Synonyms: Fusicoccum dimidia-
tum, Torula dimidiata, Scytalidium dimidiatum, Hendersonula
toruloidea) (Crous et al. 2006) is one recognised species within
the Botryosphaeriaceae family and has been reported as a seri-
ous trunk pathogen of pistachio trees (Dervis et al. 2019). More
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recently, this species has been documented on pistachio trees in
Iran (Sohrabi 2020). Geographically, this fungus is distributed
across tropical and subtropical countries and is known to infect
various plant species globally. Additionally, there are reports of
infections in humans (da Silva et al. 2016; Kuan et al. 2023) and
animals (Mery Ruiz-Cendoya et al. 2010) caused by this fungus.
In humans, Neoscytalidium dimidiatum can lead to skin and nail
infections that resemble dermatomycosis and onychomycosis, as
well as more severe diseases affecting the brain, sinuses, and
lungs, particularly in immunocompromised individuals (Lacaz
et al. 1999; Jo et al. 2021). The pathogen's potential to cause both
plant and human diseases highlights its adaptability to different
environmental conditions. According to available information,
there appears to be no standardised effective treatment for sys-
temic skin infection by N. dimidiatum (Tosti et al. 2000).

Many studies have been made in vitro to evaluate the efficacy
of a range of chemical fungicides against Botryosphaeriaceae
spp. on fruit trees (Brown-Rytlewski and McManus 2000;
Amponsah et al. 2012; Pitt et al. 2012; Twizeyimana et al. 2013)
including Botryosphaeria dothidea on pistachio trees (Ma
et al. 2002). Carbendazim is a practical fungicide that is being
used against a range of Botryosphaeriaceae species; however,
this compound, like many other chemical compounds, can have
dangerous effects on human and environmental health (MSDS,
WHS Regulations 2021). Despite the availability of chemical
fungicides, their prolonged use raises concerns regarding patho-
gen resistance, environmental contamination, and potential
risks to human health (Lamsal et al. 2011; Vitale et al. 2021).
Moreover, conventional fungicide formulations frequently ex-
hibit poor solubility and inconsistent bioavailability, which can
diminish their effectiveness (Miiller and Peters 1998). In light
of these challenges, there is a pressing need for alternative, eco-
friendly, and effective antifungal strategies to manage N. dimid-
iatum infections in pistachio orchards. Several fungicides have
been studied as antifungal agents for the control of fungal plant
pathogens. Preliminary studies have demonstrated antifungal
activities of various nanoparticles and inorganic compounds,
such as copper (Cioffi et al. 2005) and zinc oxide (Liu et al. 2009).
He et al. (2011) reported that zinc oxide nanoparticles (ZnO
NPs) significantly inhibit the growth of Botrytis cinerea and
Penicillium expansum. Mosquera-Sanchez et al. (2020) reported
the antifungal effects of zinc oxide nanoparticles (ZnO-NPs) on
Colletotrichum sp. Sardar et al. (2021) also reported a similar
response of Cu NPs on Alternaria citri as a major fungal patho-
gen of citrus. Yang et al. (2022) confirmed a preventive effect of
peracetic acid on Cladosporium porophorum, the causal agent
of black stain, a post-harvest disease in Asian pear. Moreover,
Panahandeh and Ahmadi (2022) demonstrated how the efficacy
of natural pesticides can be enhanced by adjuvants in pistachio
orchards. Polyethylene glycol, a practical adjuvant in pesticide
formulations, has also been utilised in the nanoencapsulation
of various pesticides in recent years (Ebadollahi et al. 2022).
The influence of particle size and the dispersibility of certain
fungicides on plant diseases have been explored (Yamamoto
et al. 2018). Particle size is recognised as a critical property in-
fluencing the antifungal and antibacterial activity of nanoparti-
cles, including ZnO (Lipovsky et al. 2011; Applerot et al. 2009).
The antimicrobial action of ZnO is attributed to reactions be-
tween water and the surface of the nanoparticles. Despite the
advantages of nanoparticles in drug delivery systems, many of

them exhibit poor aqueous solubility (Jassim and Rajab 2018).
Recently, the use of nanosuspensions has emerged as a novel
approach to address solubility challenges in drug delivery sys-
tems (Chin et al. 2011). A nanosuspension is a liquid containing
nanoparticles that must be stabilised by a suitable surfactant
or dispersant (Moschwitzer et al. 2004). Studies have shown
that nanosuspensions can enhance the solubility and efficacy
of treatments (Chan 2011; Wang et al. 2019). Similarly, it has
been demonstrated that aqueous suspensions of small particles
increase the antimicrobial activity of ZnO (Yamamoto 2001;
Zhang et al. 2007). In a study conducted by Ramezani
et al. (2014), nanosuspensions prepared using the sonoprecipi-
tation method were compared to powder compounds, revealing
that an optimal ratio of dispersed materials could reduce parti-
cle size, thereby enhancing dissolution rates and antimicrobial
activity. Nanosuspension preparation can be categorised into
bottom-up processes, which involve constructing nanoparticles
from molecules (e.g., micro-precipitation and melt emulsifica-
tion), and top-down processes, which reduce larger particles
to nanoscale sizes (e.g., high-pressure homogenisation and
milling) (Krishna and Prabhakar 2011). Amongst the available
methods for preparing nanosuspensions, milling techniques are
particularly advantageous for large-scale production and cost
efficiency (Jamkhande et al. 2019). Suspension stability is a key
consideration in the application of these formulations. Factors
such as thermodynamic stability and electrostatic stabilisation,
assessed by zeta potential measurements, significantly contrib-
ute to the stability of dispersed phases in suspensions (Larsson
et al. 2012). Whilst nanoparticles have demonstrated antimicro-
bial activity against various fungal pathogens, their potential
application against N. dimidiatum has yet to be explored. This
study represents the first effort to synthesise and evaluate the
antifungal activity of ZnO and CaO nanosuspensions against
N. dimidiatum. By employing a top-down milling approach, we
aim to develop a stable and scalable nanosuspension formula-
tion with enhanced solubility and bioavailability, providing a
novel alternative to traditional fungicides.

1.1 | Antifungal Activity of Zinc Oxide on Skin
Infections

Nanotechnology has introduced the use of nanoparticles, in-
cluding silver, copper, gold, sulphur, titanium dioxide, and
zinc oxide, as innovative treatments for various skin disorders
caused by fungi (Rai et al. 2017). Amongst these, zinc oxide
nanoparticles (ZnO NPs) have emerged as a promising anti-
fungal agent, particularly in the treatment of fungal dermato-
phytic infections in cattle. Their unique properties, such as a
high surface area and reactivity, enhance their antimicrobial
efficacy against a wide range of fungal pathogens. Research
has shown that ZnO NPs exhibit significant antifungal activ-
ity by disrupting fungal cell membranes and impairing their
metabolic functions. This property is particularly beneficial
for addressing dermatophytic lesions, which can cause con-
siderable discomfort and health issues in cattle, ultimately
affecting their overall productivity (Alghuthaymi et al. 2021).
Furthermore, ZnO NPs are recognised for their biocompatibil-
ity and safety, making them an attractive option for veterinary
applications. The application of ZnO NPs not only offers an
effective treatment strategy against dermatophytes but also
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contributes to reducing reliance on conventional antifungal
drugs, thereby minimising the risk of resistance development
in fungal species. Overall, the antifungal activity of zinc oxide
nanoparticles represents a novel approach to managing der-
matophytic infections in livestock, ensuring improved animal
health and welfare (Agarwal et al. 2017).

1.2 | Zinc Oxide Antifungal Activity Mechanism
on Plants

Zinc oxide nanoparticles (ZnO NPs) exhibit potent antifungal
effects due to their unique physicochemical properties and
various mechanisms of action (Sun et al. 2018). One primary
reason for their effectiveness is their ability to generate reac-
tive oxygen species (ROS) when exposed to moisture and light.
This process induces oxidative stress, resulting in damage to
essential cellular components, including lipids, proteins, and
DNA within fungal cells. The oxidative damage leads to the dis-
ruption of cell membranes and ultimately results in cell death.
The high surface area of ZnO NPs facilitates increased inter-
action with fungal cell membranes, further enhancing their
fungicidal efficacy. Notably, their effectiveness against azole-
resistant strains of Aspergillus flavus highlights the potential of
ZnO NPs as a reliable alternative for combating resistant fungal
infections in agricultural settings. Moreover, the high surface
area-to-volume ratio of ZnO NPs enables extensive interaction
with fungal membranes, enhancing their capacity to penetrate
and disrupt these structures. ZnO NPs can inhibit the growth
and reproduction of various fungal species, including those re-
sistant to conventional antifungal agents, indicating their po-
tential role as alternative therapeutic agents. Additionally, the
biocompatibility and low toxicity of ZnO NPs further under-
score their promise in both medical and agricultural applica-
tions for efficiently controlling fungal infections (Alhazmi and
Sharaf 2023).

TABLE1 | Treatments Used in the Study.

2 | Materials and Methods
2.1 | Fungal Isolates and Culture Conditions

For the evaluation of the inhibitory effects of the treat-
ments on mycelial growth of N. dimidiatum, two isolates
IRNM235 (GenBank accession numbers: ITS=PQ461110,
tef-1a =PQ472408) and IRNM237 (GenBank accession num-
bers: ITS=PQ461111, tef-1a =PQ472409) were selected. These
isolates were previously collected from pistachio orchards in
Kerman Province, Iran, identified based on morphological and
molecular analyses, and deposited in the culture collection of the
Department of Plant Protection at Shahid Bahonar University
of Kerman (CSBU), Kerman, Iran (Sohrabi 2020). Both isolates
were maintained on Potato Dextrose Agar (PDA; Oxoid, 39 g/L)
and incubated at 25°C for 7 days before use in experiments.

2.2 | Treatments

Eight treatments used in this experiment were calcium oxide
WP (Wet Powder), 2g/L and SC (Suspension Concentrated),
2g/L, zinc oxide (WP (Wet Powder), 2g/L and SC (Suspension
Concentrate), 2g/L), polyethylene glycol 400 (L (Liquid)2g/L),
peracetic acid (SL (Soluble Liquid), 2g/L), copper oxychloride
(WP (Wet Powder), 2g/L), as the positive control, and distilled
water as the negative control (Table 1).

2.3 | Synthesis of Nanosuspensions

Nanopowders of ZnO (diameter <100nm) and CaO (diame-
ter<160nm) were used to synthesise the nanosuspensions
with a mean diameter of less than 10nm. To reduce particle
size, the nanopowders were initially milled using a Ball Mill
(NabTec, BL5, Iran), at room temperature with high energy

Concentration
Treatment Formulation Commercial name Company (g/L)
Zinc oxide WP (Wettable Powder) — Sigma-Aldrich 2g/L
Calcium oxide WP (Wettable Powder) — Sigma-Aldrich 2g/L
Polyethylene glycol 400 LQ (Liquid) PEG400 Mobtakeran Shimi 2g/L
(PEG 400)
Peracetic acid SL (Soluble Liquid) Rumba Fidar Fasl Golkhaneh 2g/L
(FFG Co.)

Zinc oxide SC (Suspension LavaLa Organic Fidar Fasl Golkhaneh 2g/L

Concentrate) Liquid Zinc (FFG Co.)
Calcium oxide SC (Suspension LavaLa Organic Fidar Fasl Golkhaneh 2g/L

Concentrate) Liquid Calcium (FFG Co.)
Copper oxychloride WP (Wettable Powder) — Samiran 2g/L
(positive control)
Distilled water (negative — — — —
control)

Abbreviations: LQ, liquid; SC, suspension concentrate; SL, soluble liquid; WP, wettable powder.
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(200rpm) for 4h. Subsequently, wet milling was conducted
using a Basket Mill (Pars Centre, 5L, Iran) with ceramic balls.
To optimise the preparation of nanosuspensions for repro-
ducibility and potential scalability, preliminary milling trials
were conducted using various milling durations (1, 2, 4, and
6h). It was observed that particle size decreased with increas-
ing milling time; however, aggregation began to occur beyond
2h, and further reductions in particle size became minimal
after this point. Consequently, a milling duration of 2h was
selected as the optimal time, striking a balance between par-
ticle size reduction and stability, with a consistent final size
of less than 10nm and minimal aggregation. Additionally, the
wet milling parameters were refined to ensure reproducibil-
ity, which included a milling duration of 2h, a controlled tem-
perature of 25°C £2°C, a ball-to-powder ratio of 1:3 (one part
ceramic balls to three parts input materials), a rotation speed
of 35rpm, and a mixture of ceramic balls in equal proportions
(50:50vol.% from 1.5 and 2.5-mm balls).

To ensure reproducibility and minimise batch-to-batch varia-
tion, all milling processes were conducted under identical con-
ditions, with stringent control over the milling environment,
including ambient humidity and temperature. The quality of the
synthesised nanosuspensions was assessed using dynamic light
scattering (DLS) measurements and zeta potential analysis to
confirm consistent particle size distribution and stability across
different batches. Periodic sampling and characterisation were
performed to ensure the uniformity of the produced nanosus-
pensions. These optimised parameters facilitate both reproduc-
ibility and potential industrial scalability.

To synthesise 1000 g of zinc oxide nanosuspension, 250 g (25%
w/w) of milled zinc oxide powder was dissolved in 225 g (22.5%
w/w) deionised water at 25°C £2°C. Whilst the basket mill
(Pars Centre, 5L, Iran) was rotating at 15rpm, 225g (22.5%
w/w) Per Acetic Acid and 300g (30% w/w) Poly Ethylene
Glycol 400 (PEG400) were gradually added to the mixture.
The ZnO nanosuspension contains ZnO powder (milled), de-
ionised water, PEG 400 as an adjuvant and Peracetic Acid as a
dispersant. The concentrations of PEG 400 and Peracetic Acid
were optimised based on preliminary trials with varying con-
centrations, such as 15%, 20%, 25%, and 30% w/w for PEG 400,
and 10%, 15%, 20%, and 25% w/w for Peracetic Acid. These
trials were conducted to evaluate the effects of concentration
on nanoparticle dispersion, aggregation, and stability, helping
identify the optimal concentration for both dispersants. To en-
sure optimal dispersion and prevent aggregation, the basket
mill rotation speed was increased to 35rpm for 90 min. These
parameters were chosen based on prior tests, where the ef-
fects of different milling times and dispersant concentrations
were assessed to determine their impact on particle size and
stability. The preparation of calcium oxide nanosuspension
followed a similar protocol, with a slight modification: an ad-
ditional 200 mL of deionised water was added during milling
to account for the reaction between CaO and water. The same
concentrations of PEG 400 and Peracetic Acid were used as
an adjuvant and dispersant, respectively, and were also con-
sidered as separate treatments to evaluate their individual
fungicidal effects. Polyethylene glycol (PEG) was selected as
a dispersing agent due to its ability to prevent nanoparticle
agglomeration through steric stabilisation, thereby enhancing

the stability of the nanosuspensions (Morsi et al. 2014).
Additionally, PEG serves as a wetting agent by lowering sur-
face tension, which facilitates nanoparticle dispersion and
prevents sedimentation, ultimately ensuring better formula-
tion stability (Patel et al. 2016; Gupta et al. 2002). This char-
acteristic is essential for maintaining the long-term stability
of nanosuspensions by minimising particle aggregation and
ensuring a homogeneous formulation. Peracetic acid was in-
corporated for its antimicrobial properties and its efficacy
in improving the dispersibility of nanoparticles (Pettigrew
et al. 2012; Kitis 2004). Furthermore, it contributes to the sta-
bility of the nanosuspension by preventing microbial contam-
ination, which can compromise the long-term integrity of the
formulation (Zhang et al. 2019).

2.4 | Characterisation of the Powders
and Nanosuspensions

The size and morphology of calcium oxide (CaO) and zinc
oxide (ZnO) powders and nanosuspensions were analysed
using Scanning Electron Microscopy (SEM, Cambridge S360,
England) and Transmission Electron Microscopy (TEM,
Hitachi HF3300, Japan). The resulting images were processed
using the ImageJ programme, allowing for the selection of ran-
dom particles at different magnifications. The mean diameter
was then calculated based on the assumption of a perfect spher-
ical shape. Subsequently, the particle size distribution curve and
morphological characteristics of the samples post-milling were
discussed. The particle size distribution, as indicated by the
polydispersity index (PDI), mean hydrodynamic diameter, and
Z-average, was determined using a Dynamic Light Scattering
(DLS) analyser (Malvern, Nano ZS (red badge), ZEN3600,
England). This instrument also characterised the thermody-
namic stability of the nanosuspensions by measuring zeta poten-
tial. In addition to the initial measurements, the zeta potential of
both CaO and ZnO nanosuspensions was monitored over time
to assess long-term colloidal stability. Samples were stored at
room temperature (approximately 25°C) in tightly sealed glass
vials, with zeta potential measurements repeated after 10 and
30days of storage. The analysis of particle size distribution and
zeta potential figures provided insights into the morphology
and size distribution of the nanosuspensions. Moreover, contact
angle analysis IFT-CA, CA-ES20, Iran) was performed to assess
the hydrophilic or hydrophobic characteristics of the samples,
with the contact angle between water and dried nanosuspension
measured three times for each sample.

2.5 | Effect of Treatments on N. dimidiatum

The eight different treatments (Table 1) were tested with a unit
concentration (2g/L) to determine the fungicidal effects on my-
celial growth of N. dimidiatum isolates in vitro conditions. The
final concentration of the treatments after amending with PDA
was 2000 ppm. Each treatment was suspended in sterile distilled
water and added to 50°C molten potato dextrose agar (PDA;
Oxoid,39g/L). The amended media was thoroughly mixed, and
25mL of the solution was poured into sterile Petri dishes (10cm
in diameter) under aseptic conditions. Copper oxychloride and
distilled water were used as positive and negative treatments,
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respectively. Both isolates of N. dimidiatum were grown on PDA
and incubated at 25°C for 5days. A colonised agar plug (5mm
diam.) was taken from the margin of actively growing colo-
nies and placed in the centre of Petri dishes containing PDA
amended with above-mentioned treatments. The experiments
were repeated twice over 10days and all inoculated Petri dishes
were incubated at 25°C £1°C in a completely randomised design
(CRD) with four replications for each combination of treatment
concentration and fungal isolate. After 24 and 48h the radial
growth of fungal isolates was measured for each treatment, and
the percentage of mycelial growth inhibition (MGI) was calcu-
lated by using the formula presented by da Silva et al. (2015).

MGI (%) = [(DC — DT) /DT x 100

where MGI% is the mycelial growth inhibition percentage; DC is
the mean diameter of fungus colonies in PDA medium without
fungicide (control); DT is the mean diameter of fungus colonies
in a PDA medium with fungicides (treatments).

2.6 | Statistical Analysis

All statistical analyses were conducted using SPSS software
(Version 25) and MSTAT-C. The experiment was arranged
in a factorial layout within a completely randomised design

WS
Spot Magn
50 1000x

_ E S
Spot Magn
5.0 50000x

(CRD). Data were analysed using one-way analysis of variance
(ANOVA), with statistical significance set at p<0.05. Post-hoc
comparisons were performed using Duncan's Multiple Range
Test (DMRT) at a significance level of p<0.01 to determine
significant differences between treatment means (Gomez and
Gomez 1984). DMRT was selected because it controls the Type
I error rate across multiple comparisons by ranking means into
statistically distinct groups based on the Studentised range sta-
tistic (Q-value).

3 | Results

3.1 | Powders and Nanosuspensions
Characterisation

The morphology and mean diameter of powders and dried na-
nosuspensions were investigated by TEM and SEM microscopes
with different magnifications (Figures 1 and 2). The results have
proved the almost spherical shape of particles in nature. The
mean diameter of CaO and ZnO powders based on TEM analysis
was 8.86 and 8.17nm, respectively. This range of size for pow-
ders is related to dry milling under optimised situations before
nanosuspension synthesis. The mean diameter of CaO and ZnO
nanosuspensions was 5.43 and 4.66nm, which revealed 38.7%
and 43.0% reduction of size for CaO and ZnO samples after wet

S N
Acc.V Spot Magn
26 KV 50 1000x

2 |

pos
Acc.V Spot Magn EXP
26 KV 5.0 50000x 0

FIGURE1 | Scanning electron microscopy (SEM) images of (a) CaO powder, (b) ZnO powder, (c) CaO nanosuspension, and (d) ZnO nanosuspen-
sion. Magnifications: (a, b) X 1000; (c, d) X 50,000. Scale bars: (a, b)=2um; (c, d)=500nm.
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FIGURE 2 | Transmission electron microscopy (TEM) images of (a) CaO powder, (b) ZnO powder, (c) CaO nanosuspension, and (d) ZnO nano-

suspension. Scale bars represent 20 nm.

TABLE 2 | Nanosuspension characterisation summary.

Parameter CaO-P ZnO-P CaO-Sc ZnO-Sc
Mean diameter (nm) 8.86+2.27 8.17+1.38 5.43+2.18 4.65+1.33
Z-Average (nm) — — 199.2 193.5
Mean hydrodynamic diameter (nm) — — 204 189
PDI — — 0.447 0.441
Zeta Potential (mV) — — 29.61 30.83
Zeta potential after 10days (mV) — — 25.40 30.20
Zeta potential after 30days (mV) — — 22.10 29.50
Mean contact angle (°) — — 50.68 33.99

Abbreviations: °, degrees; mV, millivolts; nm, nanometres; P, powder; PDI, polydispersity index; Sc, suspension concentrate.

milling, respectively. According to the smaller mean deviation
amount (Table 2) and narrow variation in the size distribution
curve (Figure 3), it can be concluded that the ZnO nanosus-
pension sample had better morphology than other samples. In
order to investigate the dispersion of nanoparticles in suspen-
sions, hydrodynamic diameter based on volume, Z-average, and
polydispersity index (PDI) were discussed with a DLS analyser
(Figure 4). The PDI values for ZnO and CaO nanosuspensions
were approximately the same (CaO =0.447, ZnO=0.441). The
zeta potential was measured to study nanosuspensions stability.

The zeta potential values for CaO and ZnO nanosuspensions
were recorded at 29.61 and 30.83 (mV), respectively. The results
have proved that the zeta potential approximation for both sam-
ples is sufficient (more than +30mV) to be classified as a stable
nanosuspension. The zeta potential distribution curve showed a
narrow width, which can validate the fine stability of nanosus-
pension samples (Figure 5). To further investigate the colloidal
stability over time, the zeta potential of both nanosuspensions
was re-measured after 10 and 30days of storage at room tem-
perature (Figures 6 and 7). The ZnO nanosuspension exhibited
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zeta potential values of 30.20mV on day 10 and 29.50mV on
day 30, remaining close to the original value of 30.83mV. This
consistency indicates minimal aggregation and sustained elec-
trostatic repulsion, which are characteristics of stable disper-
sions (Smith et al. 2020; Liu et al. 2017). In contrast, the CaO
nanosuspension demonstrated a more pronounced decline in
zeta potential, with values dropping to 25.40mV and 22.10 mV
on days 10 and 30, respectively. This reduction suggests a de-
crease in surface charge and an increase in particle interactions
over time. These results highlight that the ZnO nanosuspen-
sion exhibits superior long-term electrostatic stability compared
to the CaO nanosuspension. The contact angle was measured
three times for each sample with a mean value of 50.68° for
CaO and 34.09° for ZnO nanosuspensions. These results indi-
cate that both samples are hydrophilic. However, the higher

contact angle observed for the CaO nanosuspension indicates
lower wettability compared to that of the ZnO nanosuspension.
A higher contact angle is typically associated with lower surface
energy and reduced spreading ability, which can adversely affect
nanoparticle dispersion and bioavailability in biological systems
(Karunakaran, Suriyaprabha, et al. 2015). This lower wettabil-
ity may account for the diminished antifungal efficacy of CaO
nanosuspensions observed in vitro. The notable difference in
the mean diameter values obtained from DLS and TEM analy-
ses can be attributed to the measurement methods. In the DLS
test, the hydrodynamic diameter of the particles in suspension is
measured, which is larger due to the presence of dispersants and
adjuvants. In contrast, the diameter assessed by TEM reflects
the actual size of dried particles, leading to smaller measure-
ments compared to those obtained via DLS.
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3.2 | Effect of Treatments on Mycelial Growth
of N. dimidiatum Isolates

3.2.1 | Isolate IRNM235

Based on our findings, the highest mycelial growth rate of
IRNM235 isolate was recorded in control (mean: 16.20mm)
followed by Peg400 (mean: 10.00 mm) treatment, calcium oxide
suspension (mean: 8.00mm), calcium oxide powder (mean:
7.00mm), and zinc oxide powder (mean: 6.87mm) (F=185,
dft,e=7,8, p<0.001). The results of different treatments on my-
celial growth of N. dimidiatum (isolate IRNM235) after 24 and
48h are shown in Figure 8a,b. According to Figure 8a, all treat-
ments significantly reduced the mycelial growth of IRNM235
isolate compared to the control after 24 h incubation. However,
three of the eight treatments tested—peracetic acid (DSP), zinc
oxide suspension (SC), and copper oxychloride—exhibited sig-
nificantly greater inhibitory effects compared to the other treat-
ments. No growth was observed in the Petri plates containing
these treatments, resulting in no significant differences in my-
celial inhibition data amongst them. Similarly, there was also no
significant difference in mycelial inhibition data amongst three
other treatments: the pure powders of calcium, zinc oxide, and
calcium suspension.

Relatively similar results were also observed after 48h for this
isolate Figure 8b. In this test, only five treatments significantly
reduced the mycelial growth of the IRNM235 isolate compared
to the control. Again, peracetic acid, zinc oxide suspension, and
copper oxychloride had the greatest effect in inhibiting the my-
celial growth of this fungus. These treatments were highly effec-
tive at inhibiting the mycelial growth of the IRNM235 isolate,
and no growth occurred in Petri plates including these treat-
ments. Therefore, these treatments gave complete growth inhi-
bition of this fungus isolate. Whereas, at the same time, control
Petri plates had been covered by fungal mycelium. A maximum
mycelial growth of 8.00mm was recorded in the control treat-
ments, followed by Peg400 (mean: 34.87 mm), calcium suspen-
sion (mean: 34.50 mm), and zinc oxide (mean: 23.87 mm). In this

Mycelial Growth
-

Cont Peg400 DSP Casc Zn sc Cap Znop Cu

Treatmets

regard, three treatments (Peg400, calcium oxide suspension,
and calcium oxide powder) did not depict considerable differ-
ences compared to the control (F=127.97, dft,e=7,8, p<0.0001).
The results are visually evident in Figure 9.

3.2.2 | Isolate IRNM237

Similar results were also obtained on the effect of the tested
treatments on the second isolate (isolate IRNM237) of N. dimid-
iatum (Figures 10 and 11). From amongst the tested treatments,
only three treatments that were mentioned earlier, viz., peracetic
acid, zinc oxide (Sc) and copper oxychloride were found most
effective against the mycelial growth of the IRNM237 isolate
and showed a significant difference compared to the other treat-
ments as well as the control after 24 h. In this regard, no signif-
icant difference was found amongst these three treatments, and
all of them completely inhibited the mycelial growth of the iso-
late. Both treatments of calcium oxide (powder and suspension
treatments) reduced the mycelial growth of the IRNM237 isolate
(mean: 3.20 and 5.00 mm, respectively) compared to the control
(mean: 7.87mm) (F=21.37, dft,e=7,8, p<0.001) however, there
was no significant difference compared to the control as well as
zinc oxide (pure) treatment (mean: 8.12mm).

The results obtained from the evaluation of treatments on the
mycelial growth of the IRNM237 isolate after 48h indicated
that four treatments significantly reduced the mycelial growth
of this fungus. Consistent with previous tests, copper oxychlo-
ride (Wp), zinc oxide suspension (Sc), and peracetic acid dis-
persant exhibited the most pronounced inhibitory effects on
the mycelial growth of the tested fungus, demonstrating sig-
nificant differences compared to other treatments. Notably,
there were no significant differences amongst these three treat-
ments, all of which were effective in controlling fungal myce-
lial growth. Although the treatments of calcium suspension
(mean: 26.87mm) and pure zinc oxide (mean: 26.00 mm) did not
show significant differences compared to the aforementioned
antifungals, pure calcium oxide also demonstrated a notable

»

Myecelial Growth Rate
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FIGURE 8 | Fungicidal effects of different treatments on the mycelial growth of Neoscytalidium dimidiatum (IRNM235 isolate) after (a) 24h and
(b) 48h. Treatments include Control (Cont), Polyethylene Glycol 400 (PEG400), Peracetic Acid (DSP), Calcium oxide nanosuspension (Ca sc), Zinc
oxide nano suspension (Zn sc), Calcium oxide powder (Ca p), Zinc oxide powder (ZnO p), and Copper oxychloride (Cu). Different letters above the

bars indicate statistically significant differences amongst treatments (p <0.05).
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FIGURE 9 | Representative images of Neoscytalidium dimidiatum (IRNM235 isolate) mycelial growth under different treatments after 24h (up-
per panel) and 48 h (lower panel). Treatments: (a) Control, (b) PEG400, (c) Peracetic Acid, (d) Calcium oxide nanosuspension, (e) Zinc oxide nanosus-
pension, (f) Calcium Oxide (powder), (g) Zinc Oxide (powder), (h) Copper Oxychloride.

effect on mycelial growth, with a mean of 20.87mm, compared
to the control group, which had a mean growth of 30.12mm.
Additionally, this study revealed that PEG 400, used as a wetting
agent in the suspension concentrate, did not influence N. dimid-
iatum mycelial growth, recording a mean of 34 mm. In contrast,
peracetic acid displayed a satisfactory effect in inhibiting the
mycelial growth of the fungus in vitro (mean: 0.00). Figure 10b
(F=132.16, dft,e=7,8, p=0.000).

4 | Discussion

Nanosuspensions hold significant potential for providing sta-
ble formulations that are more efficient for their intended

applications. The primary objective of nanosuspensions is to
preserve the properties of active substances and prevent their
degradation (Gulsun et al. 2018). Recent studies have reported
enhancements in two critical characteristics—toxicity and sta-
bility of pesticides—through the formulation of nanoparticles
(Wang et al. 2021; Ebadollahi et al. 2022). The current study rep-
resents the first report on the effects of calcium and zinc oxide
nanosuspensions synthesised on the mycelial growth rate of
Neoscytalidium dimidiatum in vitro. We employed a combina-
tion of dry and wet milling methods under optimised parame-
ters to achieve uniformly stable nanosuspensions with a mean
diameter of less than 10nm. Previous research has indicated
that modifying certain parameters of zinc oxide nanoparticles
can enhance their antimicrobial activity (Talebian et al. 2013;
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FIGURE10 | Fungicidal effects of different treatments on the mycelial growth of Neoscytalidium dimidiatum (RNM237 isolate) after (a) 24h and
(b) 48h. Treatments include Control (Cont), Polyethylene Glycol 400 (PEG400), Peracetic Acid (DSP), Calcium oxide nanosuspension (Ca sc), Zinc
oxide nanosuspension (Zn sc), Calcium oxide powder (Ca p), Zinc oxide powder (ZnO p), and Copper oxychloride (Cu). Different letters above the bars

indicate statistically significant differences amongst treatments (p <0.05).

Stankovi¢ et al. 2013). Size reduction and chemical surface
modifications using suitable dopants have been shown to in-
crease the antimicrobial efficacy of various compounds (Kairyte
et al. 2013). In our investigation, we modified both effective
parameters, successfully reducing the particle size to less than
10nm and employing peracetic acid for surface modification,
to enhance the antimicrobial activity of the nanosuspensions.
Our results indicated that these adjustments significantly in-
creased the efficacy of the zinc oxide treatment. Additionally,
we evaluated the characteristics of the nanosuspensions, focus-
ing on particle morphology, dispersion uniformity, and stabil-
ity. Findings from Transmission Electron Microscopy (TEM)
and Dynamic Light Scattering (DLS) analysis, including size
distribution curves and mean deviation, revealed that the zinc
oxide nanosuspension exhibited a narrow size distribution and
optimal morphology. The observed discrepancy between the
TEM and DLS results can be attributed to the difference in the
measurement techniques. TEM directly measures the particle
size, whilst DLS assesses the hydrodynamic diameter, which
includes the effects of mild aggregation and solvation in the
solution. This aggregation could lead to a slight increase in the
measured particle size in DLS, as the particles may form clusters
in the suspension. However, despite this aggregation, the nar-
row size distribution and low polydispersity index (less than 0.5)
observed in both nanosuspension samples suggest that the ag-
gregation does not significantly affect the stability or dispersion
of the nanoparticles in the suspension. The observed discrep-
ancy between the Transmission Electron Microscopy (TEM)
and Dynamic Light Scattering (DLS) results can be attributed to
the differences in their measurement techniques. TEM directly
measures the actual particle size, whilst DLS assesses the hydro-
dynamic diameter, which accounts for the effects of mild aggre-
gation and solvation in the solution. This aggregation may result
in a slight increase in the measured particle size during DLS
analysis as particles can form clusters within the suspension.
Despite the potential for aggregation, the narrow size distribu-
tion and low polydispersity index (less than 0.5) observed in both
nanosuspension samples indicate that such aggregation does not
significantly impact the stability or dispersion of the nanoparti-
cles in the suspension. This suggests that the nanosuspensions

maintain effective stability and uniformity, which are crucial
for their intended applications. The polydispersity index (PDI),
which is less than 0.5, indicates a uniform dispersion of nanopar-
ticles in both nanosuspension samples and suggests a narrow
particle size distribution (Gulsun et al. 2018). Additionally, the
low Z-average values (Ca0=199.2nm, ZnO=193.5nm) and
the small width of the size distribution curve for the ZnO na-
nosuspension further signify that this sample exhibits superior
dispersion of nanoparticles within the suspension (Sarmphim
et al. 2017). In this study, stability was assessed through zeta
potential measurements, and our results suggest that both
samples can be classified as stable nanosuspensions (Miiller
et al. 2001). However, the ZnO nanosuspension, due to its higher
zeta potential value, can be considered more stable and exhibits
greater absorbency than the CaO nanosuspension (Clogston and
Patri 2011; Li et al. 2007). Additionally, long-term zeta poten-
tial measurements further substantiate the superior stability of
the ZnO nanosuspension. Over a 30-day period, the ZnO sample
maintained a consistently higher surface charge compared to
the CaO sample, indicating sustained electrostatic repulsion and
a reduced risk of particle aggregation. This prolonged stability
is critical for ensuring uniform dispersion and maximising the
antifungal efficacy of the nanosuspensions in practical applica-
tions (Honary and Zahir 2013; Danaei et al. 2018). These find-
ings reinforce the suitability of ZnO nanosuspension as a robust
and reliable candidate for future formulations.

The higher contact angle of CaO nanosuspension represents
less solubility and higher surface attraction that might cause the
formation of aggregation and these findings are consistent with
the studies conducted by Karunakaran, Surya, et al. (2015). This
reduced wettability may contribute to the weaker antifungal
performance of CaO nanosuspension, as lower solubility and
higher aggregation limit the bioavailability of active nanopar-
ticles (Bhattacharya et al. 2019). In contrast, ZnO nanosuspen-
sion, with a lower contact angle and higher stability, exhibited
significantly better antifungal activity against N. dimidiatum.
In this study, the focus was primarily on identifying the most
effective treatment against Neoscytalidium dimidiatum. The ef-
fect of concentration on the inhibitory activity will be evaluated
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FIGURE 11 | Representative images of Neoscytalidium dimidiatum (RNM237 isolate) mycelial growth under different treatments after 24h (up-
per panel) and 48 h (lower panel). Treatments: (a) Control, (b) PEG400, (c) Peracetic Acid, (d) Calcium oxide nanosuspension, () Zinc oxide nanosus-
pension, (f) Calcium Oxide (powder), (g) Zinc Oxide (powder), (h) Copper Oxychloride.

in future studies to determine the optimal concentration for
maximum efficacy. Studies on the preparation of azoxystrobin
nanosuspension using the wet milling method have demon-
strated that this formulation can reduce the mean diameter to
238.1nm. This reduction in mean diameter enhances the anti-
fungal activity and solubility of azoxystrobin (Yao et al. 2018).
In the current study, we investigated the antifungal effects of
various compounds on the mycelial growth of Neoscytalidium
dimidiatum. This fungus is known by several synonyms, in-
cluding Torula dimidiata, Hendersonula toruloidea, Natrassia
mangiferae, Scytalidium dimidiatum, Scytalidium hyalinum,
Fusicoccum dimidiatum, and Neoscytalidium hyalinum. Recent
molecular studies have identified that four species within the

Botryosphaeriaceae family—N. dimidiatum, N. novaehol-
landiae, and N. orchidacearum—are now considered syn-
onyms of N. dimidiatum (Zhang et al. 2021). N. dimidiatum is
recognised as a significant trunk pathogen affecting fruit, for-
est, and ornamental trees worldwide (Mayorquin et al. 2016;
Nouri, Mohammadi, and Mirabolfathy 2018; Guney et al. 2022;
Gusella et al. 2023). This fungal pathogen has also been re-
ported to cause cankers and dieback in various tree species in
Iran (Mirzaee et al. 2002; Nazerian et al. 2015; Yeganeh and
Mohammadi 2021). Recently, it has been isolated and identified
as a primary fungal trunk pathogen of pistachio trees in Iran
(Sohrabi 2020) and in other countries (Dervis et al. 2019; Kurt
et al. 2019). Our experimental results indicate that three of the
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eight treatments—peracetic acid, zinc oxide suspension, and
copper oxychloride—completely inhibited the mycelial growth
of N. dimidiatum in vitro. In contrast, polyethylene glycol, cal-
cium oxide (both pure and as a nanosuspension), and pure zinc
oxide failed to provide satisfactory control. Previous studies have
shown that fungicides can have varying effects on the mycelial
growth of Botryosphaeriaceae species, including N. dimidiatum.
For instance, in a study focused on N. dimidiatum, commonly
responsible for stem canker on Royal Poinciana, Cidely was top
reported as the most effective fungicide against this pathogen
(Al Raish et al. 2020). In similar research, fluazinam, thiophan-
ate-methyl, tebuconazole, and boscalid + pyraclostrobin were
reported as effective compounds in controlling the mycelium
growth of this pathogen in vitro (Sakgi et al. 2022).

Although promising results were observed in the laboratory
setting, scalability remains a key concern. The ability to pro-
duce nanosuspensions on a large scale whilst maintaining the
consistency of particle size, stability, and efficacy presents chal-
lenges. Current methods used in this study, including wet mill-
ing, may be difficult to scale up economically or efficiently for
field applications. Additionally, the long-term stability of the na-
nosuspensions under field conditions—as well as temperature
fluctuations, moisture, and UV exposure—has not been fully
investigated. Further work is needed to assess the economic
feasibility, environmental impact, and effectiveness of scaling
up the production of zinc oxide and calcium oxide nanosuspen-
sions for widespread agricultural use. Whilst nanosuspensions
have demonstrated promising antifungal activity in vitro, addi-
tional research is required to translate these findings into prac-
tical field applications. Key factors such as formulation stability,
delivery mechanisms, and environmental persistence must be
optimised to ensure consistent efficacy under field conditions.
Moreover, cost-effectiveness and regulatory approval will be
critical considerations for large-scale agricultural implementa-
tion. Future studies should explore the integration of nanosus-
pensions into existing disease management programmes and
assess their impact on beneficial microbial communities in the
soil and plant microbiome.

Previous studies have shown that zinc oxide compounds exhib-
ited considerable antimicrobial and antifungal activity (Singh
and Nanda 2013). The antifungal activity of ZnO nanoparticles
is primarily due to their ability to generate ROS, which leads to
oxidative stress, protein dysfunction, and DNA damage in fungal
cells (Raghupathi et al. 2011; Dimkpa et al. 2012). Additionally,
ZnO interacts with fungal membranes through electrostatic at-
traction, causing increased permeability and leakage of intracel-
lular components (Lallo da Silva et al. 2019). On the other hand,
CaO nanoparticles act by altering the pH of the fungal micro-
environment and disrupting metabolic processes, though their
limited antifungal activity in this study suggests that this mech-
anism is less effective compared to ZnO-mediated oxidative
stress (Kumar et al. 2019). Furthermore, compounds derived
from zinc oxide are considered low-cost, biocompatible, and
environmentally friendly (Mandal et al. 2022). The fungicidal
effects of zinc oxide are particularly evident in studies such as
the one involving ZnO-encapsulated essential oil from Zataria
multiflora, which has shown effectiveness against Alternaria
solani (Akhtari et al. 2022). Copper oxychloride, also known as
dicopper chloride trihydroxide, is classified within the M FRAC

Group and is recommended for use against various fungal, bac-
terial, and Oomycete plant diseases, including citrus gummo-
sis, potato late blight, walnut anthracnose, cucumber angular
leaf spot, and citrus blight caused by N. dimidiatum (Sheikhi
et al. 2017). Both pure and suspension concentrates of calcium
oxide yielded similar results, demonstrating a reduction in the
mycelial growth of N. dimidiatum; however, their effective-
ness was significantly lower compared to that of the zinc oxide
suspension and peracetic acid (DSP). Amongst the treatments
examined, PEG 400 and peracetic acid were used as adjuvants.
Notably, peracetic acid exhibited a substantial impact on the
mycelial growth rate of N. dimidiatum, whilst PEG 400 showed
no effect on this pathogen. Peracetic acid can be regarded as a
strong synergist when combined with zinc oxide, although it
does not exhibit the same synergy with calcium oxide.

The underlying mechanism of this synergy may involve reac-
tive oxygen species (ROS) generation and membrane disrup-
tion. ZnO nanoparticles are known to produce hydroxyl radicals
(+OH) and superoxide anions (O,) upon interaction with fungal
cells, leading to oxidative stress and cell damage (Lallo da Silva
et al. 2019; Raghupathi et al. 2011). PAA enhances this effect
by disrupting fungal cell membranes (Kitis 2004) and increas-
ing ZnO nanoparticle penetration, thereby amplifying oxidative
damage and improving antifungal efficacy (Dimkpa et al. 2012).
Peracetic acid, also known as peroxyacetic acid (PAA), is a
highly effective disinfectant that targets a wide range of micro-
organisms, including various bacteria and viruses (Kitis 2004;
Bernet et al. 2005). Synergistic effects can be observed when
PAA is combined with different compounds, such as fungicides
and organic sanitizers. For instance, Ayoub et al. (2018) reported
a synergistic action between SWITCH (produced by Syngenta,
Switzerland) and the organic sanitizer PERACLEAN (PAA)5
from Evonik Industries, Germany, for controlling Botrytis cine-
rea. Previous research has established that PAA alone possesses
significant antifungal properties. Mari et al. (2004) demonstrated
its antifungal activity against Monilinia laxa and Rhizopus sto-
lonifer. Additionally, Stefanello et al. (2020) reported that PAA
exhibits high antifungal efficacy against various moulds, in-
cluding species of Aspergillus and Paecilomyces. These findings
support the potential of peracetic acid as a powerful agent in the
management of fungal pathogens. Similarly, in a separate study,
Yang et al. (2022) demonstrated that peracetic acid (PAA) can
significantly reduce the presence of fungi responsible for black
stains in Asian pears. These findings position PAA as a prom-
ising alternative for controlling certain fungal species and plant
diseases. Our research found that the advanced nanosuspen-
sion formulation of zinc oxide enhanced its antifungal efficacy
against N. dimidiatum. Nanosuspension technology addresses
the challenges associated with poorly water-soluble compounds,
thereby increasing their bioavailability and activity. In essence,
key characteristics of antifungal compounds, such as stability
and effectiveness, can be significantly improved through the
application of nanosuspension technology. Our results align
with previous studies on antifungal agents, which have indi-
cated that nanosuspension formulations are not only techni-
cally simpler and more cost-effective but also yield physically
stable products compared to other formulations (Siekmann and
Westesen 1995; Miiller and Peters 1998). The findings from this
study revealed that two N. dimidiatum isolates exhibited vary-
ing degrees of sensitivity to the treatments, particularly the pure
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powder of zinc oxide. Specifically, the pure zinc oxide was more
effective against the mycelial growth of the IRNM235 isolate,
whilst the IRNM237 isolate showed greater resistance to this
treatment. Our results corroborate those of James et al. (2017),
who investigated the effects of various antifungal agents on N.
dimidiatum isolates obtained from clinical specimens. This pat-
tern is also consistent with the results of fungicide evaluations
against other Botryosphaeriaceae species, such as Diplodia
and Neofusicoccum, associated with Botryosphaeria canker
in grapevines in Chile (Torres et al. 2013). Deising et al. (2008)
noted that fungicide resistance may arise from genetic factors,
including gene mutations and encoding in fungal pathogens.
Consequently, different isolates of fungal pathogens may exhibit
varied responses to fungicides. The unique properties of zinc
oxide nanoparticles, such as their solubility in water and en-
hanced efficacy of active ingredients, highlight their promising
potential in managing N. dimidiatum. However, further research
is warranted to explore the feasibility of loading conventional in-
organic compounds onto different isolates of N. dimidiatum.

In the present study, we propose an industrial method for syn-
thesising stable nanosuspensions of zinc and calcium oxide,
achieving a mean diameter of less than 10nm. We investigated
the fungicidal effects of these synthesised nanosuspensions,
along with two additive materials, in comparison to pure cal-
cium and zinc oxide on the mycelial growth rate of N. dimid-
iatum. This study marks the inaugural effort to synthesise and
evaluate zinc oxide (ZnO) and calcium oxide (CaO) nanosus-
pensions for the control of N. dimidiatum. Utilising a top-down
milling approach, we successfully developed a stable nanosus-
pension that exhibits improved solubility and bioavailability.
Unlike conventional fungicide formulations, these nanosuspen-
sions provide a targeted, eco-friendly alternative, significantly
reducing environmental impact. These findings pave the way
for the application of nanotechnology in sustainable plant dis-
ease management. According to the in vitro results, zinc oxide
nanosuspension completely inhibited the mycelial growth of N.
dimidiatum. Additionally, the experiments demonstrated that
peracetic acid exhibited synergistic effects with zinc oxide (wp)
on the mycelial growth rate of N. dimidiatum. Further research
into the potential application of zinc oxide nanosuspension and
peracetic acid under orchard conditions would be beneficial.
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