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Abstract: Nanoformulation has been considered one of the newly applied methods in integrated pest
management strategies. In this research, a conventional neonicotinoid insecticide acetamiprid was
nanoencapsulated via AL (Sodium Alginate) and PEG (Polyethylene Glycol) and tested against the
elm leaf beetle Xanthogaleruca luteola. The synthesized particles had spherical-like morphology and
nanoscale based on TEM (Transmission Electron Microscopy) and DLS (Dynamic Light Scattering).
The encapsulation efficiency and loading percentages of acetamiprid in AL and PEG were 92.58%
and 90.15%, and 88.46% and 86.79%, respectively. Leaf discs treated with different formulations by
the leaf-dipping method were used for oral toxicity assays. The LC50 values (Lethal Concentration to
kill 50% of insect population) of acetamiprid and Al- and PEG-nanoencapsulated formulations on
third-instar larvae were 0.68, 0.04, and 0.08 ppm, respectively. Based on the highest relative potency,
AL-encapsulated acetamiprid had the most toxicity. The content of energy reserve protein, glucose,
and triglyceride and the activity of detoxifying enzymes esterase and glutathione S-transferase
of the larvae treated by LC50 values of nanoformulations were also decreased. According to the
current findings, the nanoencapsulation of acetamiprid by Al and PEG can increase its insecticidal
performance in terms of lethal and sublethal toxicity.

Keywords: acetamiprid; nanoencapsulation; sodium alginate; polyethylene glycol; toxicity

1. Introduction

The elm leaf beetle, Xanthogaleruca luteola Müller (Coleoptera: Chrysomelidae), is one
of the damaging insect pests of elm (Ulmus spp.) in central and southern Europe, North
Africa, west and central Asia, southern Australia, and temperate areas in North and South
America [1]. Both the larvae and adults of X. luteola feed on the emergent leaves, and
repeated infestations make the tree susceptible to different pests and diseases [2]. Although
the use of synthetic chemicals is a primary method in the management of such insect pests,
their excessive utilization can result in serious side-effects, including the spread of toxic
ingredients in the environment and threats to non-target organisms [3–5]. Accordingly, the
introduction of novel and efficient formulations to decrease the number of active ingredients
and their detrimental side-effects is necessary for insect pest management strategies [6].
The pesticide encapsulation based on the controlled-release technique was considered an
effective way to improve their stability [7,8]. Furthermore, encapsulated formulations
are expected to diminish the active ingredients’ utilization compared to non-capsulated
materials [9].
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An encapsulation process based on nanotechnology has extensive applications in
industries from foods to cosmetics, paper, paints, agriculture, etc. [6,10–12]. Encapsulation
of the active ingredients with other materials can envelope sensitive ingredients into a
matrix to protect from adverse factors such as air or light [13]. Nanoencapsulation has also
been considered for applicable formulations of pesticides in recent years [14,15], in which
several techniques such as chemical vapor deposition, electrochemical, microwave-assisted
and sol–gel synthesis, and ultra-sonication were used for nanoparticles’ synthesis [16].

Sodium alginate (AL) is a linear natural bio-polysaccharide extracted from brown
algae and has good water solubility, biocompatibility, and low toxicity [17]. It has been
reported that AL can improve the solubility of hydrophobic ingredients [18,19] and inhibit
the photo-degradation of active compounds [20,21]. Based on the low cost, availability, and
biodegradability, synthetic polymer polyethylene glycol (PEG) has been recommended for
nanoencapsulation of pesticides [22]. PEG has several remarkable properties, including
biocompatibility, biodegradability, and solubility in organic solvents and water [23]. Indeed,
the promising potential of PEG-based micro/nanoparticles for agricultural, food, and
medical applications was reported [24–26]. Thus, AL and PEG were chosen as hydrophilic
pesticide carriers in this study.

Acetamiprid is an odorless neonicotinoid insecticide with a chloropyridinyl group
that acts on the acetylcholine (nACh) receptors, which are used for pest control on fruit and
unfruitful trees, leafy vegetables, and ornamental plants [27,28]. It is an organic compound
with 222.67 g/mol molar mass and the chemical formula C10H11ClN4. This neonicotinoid
insecticide is usually a xenobiotic and can have detrimental impacts on non-target insect
predators and vertebrates [29–31]. Accordingly, acetamiprid, effective on several insect
pests, has harmful side-effects and should be sustainably used with low concentration.

Nanoencapsulation of pesticides emerges as a developing field in pest management
strategies by low concentration of active agents, making them less toxic to non-target
organisms along with long-term availability to the target pests [8,32]. Therefore, the present
study was conducted to achieve the successful nanoencapsulation of acetamiprid based
on AL and PEG for control of elm leaf beetle by application of low active-ingredient
concentration and more sustainable formulations.

2. Materials and Methods
2.1. Insect Rearing

Eggs and larvae of the elm leaf beetle, X. luteola, were collected from elm trees (Ul-
mus americana L.) in the city park of Rasht, northern Iran. The larvae were reared in plastic
boxes (10–20 cm) in a rearing chamber set at 25 ± 2 ◦C, 14–10 h light–dark schedule,
and 65% relative humidity. Fresh elm leaves were provided daily for feeding. Adults
were reared similarly, and their eggs were used to maintain the culture. Newly emerged
3rd-instar larvae (<24 h) were used for bioassays.

2.2. Chemicals

Calcium chloride, polyvinyl alcohol (PVA), AL, PEG, d-mannitol, dioctyl sodium
sulphosuccinate, and 1-chloro-2, 4-dinitrobenzene (CDNB) were purchased from Tebshahr
Company, Tehran, Iran. Acetamiprid (20% SP: ‘A soluble powder formulation contain-
ing 20% of the active ingredient’) was taken from Aroxa Crop Science Private Limited,
Dhamatwan, India.

2.3. Preparation of AL–Acetamiprid Nanoparticles

Nanoparticles were synthesized by emulsion cross-linking technology, according to
Chavanpatil et al. [33]. A 10 mL measure of sodium alginate solution in water (0.1:1.0% w/v)
was emulsified in dioctyl sodium sulfosuccinate dissolved in 30 mL methylene chloride
(0.05:20% w/v) through sonication above the ice bath for 1 min. The emulsion was emulsified
into 150 mL of aqueous PVA solution (5% w/v) by sonication above the ice bath for 1 min
to form a secondary water-in-oil-in-water emulsion. The emulsion was stirred using a
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magnetic stirrer, and 50 mL of aqueous calcium chloride solution (60% w/v) was then
added and additionally stirred for 18 h. To evaporate methylene chloride, the emulsion
was stirred under a vacuum for 1 h. To prepare insecticide sodium alginate nanoparticles,
150 mg acetamiprid was dissolved in the aqueous alginate solution by sonication. The
formed nanoparticles were isolated by ultracentrifugation at 15,000 rpm, washed twice with
deionized water to eliminate PVA and unentrapped acetamiprid, and then re-suspended in
water. Finally, the protectant d-mannitol (5%, w/v) was added and the particles lyophilized
at 0.0010 mbar pressure and −90 ◦C for 24 h.

2.4. Preparation of PEG–Acetamiprid Nanoparticles

Briefly, 0.2 g acetamiprid was dissolved in 12 mL PEG. Hydroxypropyl methylcellulose
solution was prepared by adding 0.2 g in 20 mL of distilled water to the acetamiprid-PEG
solution. To achieve a homogeneous solution, the final solution was stirred for 2 h at 300 rpm
under room temperature.

2.5. Description of Nanoparticles

The size and morphology of AL– and PEG–acetamiprid nanoparticles were assessed
by Transmission Electron Microscopy (TEM; Zeiss Leo 906 TEM-Gmbh, Oberkochen, Ger-
many) based on the negative-staining method [23]: TEM analysis was acquired at an
accelerating voltage of 120 kV. For the sample preparation procedure, 1 mg of the sample
was dispersed in 1 mL H2O, and then one drop of the nanoparticle suspension was poured
on a carbon-coated copper grid. Molecular aggregates were permitted to resolve on the
grid for 3 min. The surplus liquid was blotted with a filter paper strip. Afterward, a drop
of phosphotungstic acid (2%) was poured to the grid. The extra stain was removed after
1 min, and the grid was dried at room temperature. The particles were also specified thrice
by Dynamic Light Scattering (DLS) using a spectroscopy instrument (Zetasizer Nano-ZS90
system, Malvern, Worcestershire, UK). For data analysis and data collection, the size distri-
bution data were readily acquired from the software of the DLS instrument. The analysis
of the DLS data were performed by cumulant method, which enables the determination
of the average particle size in a nanoparticle sample. FTIR analysis (100 Spectrum, Perkin
Elmer, Rodgau, Germany) was carried out by the KBr pellet method and the presence of
the various vibrational modes in the synthesized nanoparticles was investigated [34].

2.6. Oral Toxicity Assay

Oral toxicity was assessed on newly emerged 3rd-instar larvae of X. luteola with
different concentrations of acetamiprid (0.25, 0.50, 0.75, 1.50, and 4.00 ppm) and AL– (0.01,
0.03, 0.06, 0.12, and 0.18 ppm) and PEG–acetamiprid nanoparticles (0.01, 0.05, 0.10, 0.25,
and 0.50 ppm), which were selected based on preliminary experiments. The fresh elm
leaf discs (4 cm × 7 cm) were dipped in desired concentrations for 30 s and dried at room
temperature for 30 min. Treated leaf discs were positioned in 9 cm Petri dishes, and larvae
were transferred to feed for 24 h. In each experiment, ten larvae were tested in 3 replicates.
Water-dipped leaf discs were used as control, and the mortality was recorded after 24 h.

2.7. Preparation of the Whole-Body Homogenates for Biochemical Analysis

Third-instar larvae treated by nanoencapsulated acetamiprid with LC30 and LC50
values were killed by freezing after 24 h of the treatment. The whole body was homogenized
in 1 mL of universal buffer and was centrifuged for 10 min at 13,000× g. The supernatant
was transferred to new tubes and stored at −20 ◦C until used. Each biochemical analysis
was repeated three times.

2.8. Energy Reserves

The amount of whole-body protein in the alive insects treated by LC30 and LC50 of all
formulations was assessed by the method of Bradford [35]. In this technique, proteins made
a compound purplish blue with an alkaline copper solution, which, with its absorption
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value at 540 nm, is related to the amount of the whole-body protein. The amount of glucose
in treated larvae was examined according to the techniques of Siegert [36] by automated
enzymatic analyses using a glucose assay kit (Biochem Co., Tehran, Iran). Reagents A
and B were mixed (4:1), followed by addition of samples. The absorbance was read at
492 nm in an ELISA reader (Awareness, Temecula, CA, USA). The amount of triglyceride
was estimated according to the method of Fossati and Prencipe [37] with a triglyceride kit
(Biochem Co., Tehran, Iran). The reducing absorption rate for triglyceride analysis was
read at 545 nm.

2.9. Detoxifying Enzymes

Glutathione S-Transferase (GST) and general esterases as key detoxifying enzymes
in insect pests were estimated according to the methods of Van Asperen [38] and Op-
penorth et al. [39], respectively. For determination of the glutathione S-transferase (GST)
activity, 1-chloro-2, 4-dinitrobenzene (CDNB) (20 mM) was used as the substrate. A 15 µL
measure of the supernatant was mixed with 135 µL of phosphate buffer (pH 7) and 50 µL
of CDNB. The absorbance was read at 340 nm. For general esterases, Alpha-naphtylacetate
(α-NA) and β-naphtylacetate (β-NA) (10 mM) were used as substrates. One gut from each
treated insect was homogenized with 1000 µL 0.1 M phosphate buffer (pH 7) containing
0.01% Triton x-100. This solution reacted with the substrate, and by using a dye indicator
(Fast Blue RR salt) (1 mM) a colored solution was formed and the absorbance was read at
630 nm.

2.10. Data Analysis

The normality of mortality data was tested by Kolmogorov–Smirnov and data were
then subjected to analysis of variance. Probit analyses to calculate lethal concentrations
and regression-line details were used for all formulations by Polo-Plus (LeOra Software,
Berkeley, CA, USA). Relative potency (RP) for each mixture was determined on the basis
of acetamiprid (lowest toxicity) and calculated using the following formula: RP = LC50 of
acetamiprid/LC50 of individual other compounds. Raw data obtained from the biochemical
analysis were subjected to a one-way statistical analysis of variance test for significant
differences in the measured parameters. The Tukey–Kramer test at a 5% significance
level was used to compare means using SAS statistical software (SAS Institute, Cary, NC,
USA). Encapsulation efficiency and loading percentages were evaluated according to the
following formula [40]:

Efficiency Percentage Encapsulation =
weight of encapsulated acetamiprid
weight of acetamiprid used initially

× 100

Loading Percentage =
weight of encapsulated acetamiprid

weight of acetamiprid − weight of encapsulated particles
× 100

3. Results
3.1. Characterization of Synthesized Nanoparticles

The surface morphology and size of AL– and PEG–acetamiprid were investigated
by TEM, in which elliptical shapes of AL– and PEG–acetamiprid were distinguished.
Although there were various particle sizes, an approximate size of 46.13 and 25.66 nm
could be detected for AL– and PEG–acetamiprid nanoparticles, respectively (Figure 1).
DLS analysis was also used to measure the particle sizes of AL– and PEG–acetamiprid
through the colloidal solutions. As shown in Figure 2, a z-average particle size of 270.5 and
101.2 nm with a polydispersity index (PDI) of 0.462 and 0.350 were obtained for AL- and
PEG-based nanoparticles, respectively. PDI values less than <0.5 are good for detecting the
size distribution of colloidal suspension and suitable for the DLS technique [41], which was
obtained in this study. DLS sizes are larger than those obtained by TEM for corresponding
nanoparticles because the nanoparticles are solvated in the solution phase in the DLS
analysis. Therefore, the nanoparticles may be aggregated in the colloidal solution.
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FTIR spectroscopy was applied to confirm the formation of synthesized nanoparticles.
Therefore, the functional groups of AL, PEG, acetamiprid, and AL– and PEG–acetamiprid
nanoparticles were identified using FTIR spectra (Figure 3). The AL-based nanoparticles
showed frequency bands at about 1420 and 1635 cm−1, which are assigned to symmetric
and asymmetric stretching vibrations of carboxylate groups. The presence of a peak
at a wavenumber of 2923 cm−1 corresponds to the asymmetric aliphatic CH stretching
bands. The adsorption peak in the range of 3000–3600 cm−1 in the spectrum of AL is
attributed to the OH stretching vibration. Moreover, the frequency peaks at 1066 cm−1

correspond to the C–O bond stretching vibration of the pyranose ring. For acetamiprid, the
characteristic peaks at 2177 and 1568 cm−1 are related to –CN and C=N groups stretching
vibrations, respectively. The C–H bond stretching vibrations were observed in the range
of 2600–3000 cm−1. The adsorption peak at around 1098 cm−1 is related to the C–Cl
bond stretching. In addition, the broad peak at 3300–3500, and 1377 cm−1 are ascribed to
NH and C–N stretching vibration, respectively. According to the spectrum of PEG, the
bands located at 1461, 1250, and 1106 cm−1 are assigned to the C–H bending vibration,
C–O–C vibrational elongation, and stretching vibration of the C–O bond, respectively.
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Additionally, the peaks at 2875 and 2917 cm−1 are ascribed to the C–H stretching vibrations.
Furthermore, the adsorption band at 3420 cm−1 is related to the stretching vibration of a
hydroxyl group. The FTIR spectrum of AL– and PEG–acetamiprid nanoparticles showed
some characteristic absorption bands of AL and PEG, respectively. For example, in the
AL–acetamiprid spectrum, the characteristic absorption bands of AL, including symmetric
and asymmetric stretching vibrations of carboxylate groups at 1420 cm−1 and 1635 cm−1,
existed. Furthermore, in the spectrum of PEG-acetamiprid, the bands in the wavenumbers
of 2875 and 2917 cm−1 are related to C–H stretching vibrations of PEG. However, it is seen
that some of the absorption peaks of AL and PEG were not observed in the spectrum of AL–
and PEG–acetamiprid due to overlapping their peaks with acetamiprid peaks. The results
of the FTIR analysis confirmed the successful loading of AL and PEG into the acetamiprid.
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The encapsulation efficiency percentage (EE%) and loading percentage of acetamiprid
in AL and PEG were 92.58% and 90.15%, and 88.46% and 86.79%, respectively.

3.2. Larvicidal Activity

Based on the results of a Kolmogorov–Smirnov test, the mortality of X. luteola lar-
vae treated by acetamiprid (Z = 0.642: two-tailed Significant = 0.804), Al–acetamiprid
(Z = 0.595: two-tailed Significant = 0.871), and PEG–acetamiprid (Z = 0.585: two-tailed
Significant = 0.883) had statistically normal distributions. Analysis of variance was also
showed that tested concentrations of acetamiprid (F = 19.00), AL–acetamiprid (F = 24.38),
and PEG–acetamiprid (F = 36.57) had significant effects on the larval mortality (df = 4, 14:
p < 0.001).

The LC50 values of acetamiprid, Al–acetamiprid, and PEG–acetamiprid were 0.68,
0.04, and 0.08 ppm, respectively. It can be assumed that the toxicity of acetamiprid was
augmented after nanoencapsulation by Al and PEG. Indeed, based on the lowest LC50
value and the highest relative potency, AL–acetamiprid was more toxic than acetamiprid
and PEG–acetamiprid against third-instar larvae of X. luteola (Table 1).

Table 1. Probit analysis of free and nanoencapsulated acetamiprid based on AL and PEG on third-
instar larvae of Xanthogaleruca luteola.

Bioassay

LC30
(95% Confidence

Limits)
(ppm)

LC50
(95% Confidence

Limits)
(ppm)

Slope ± SE Intercept ± SE χ2

(df = 3)
Relative
Potency

AL–acetamiprid 0.015 (0.005–0.028) 0.048 (0.025–0.076) 1.071 ± 0.198 −0.731 ± 0.211 2.734 * 14.16
PEG–acetamiprid 0.024 (0.008–0.048) 0.081 (0.046–0.135) 1.002 ± 0.196 −0.913 ± 0.219 0.321 * 8.39

Acetamiprid 0.338 (0.191–0.475) 0.680 (0.486–0.915) 1.729 ± 0.304 −3.170 ± 0.588 0.838 * 1.00

* According to Chi-square values, no heterogeneity factor was used in the calculation of confidence limits. The
LC30 values were selected for sublethal bioassays. LC: lethal concentration (ppm), and df: degrees of freedom.
Relative potency = LC50 of Acetamiprid/LC50 of other compounds.

3.3. Energy Reserves

The effect of AL– and PEG–acetamiprid nanoparticles and the acetamiprid on the
energy reserves of X. luteola larvae are presented in Table 2. Increasing concentration
of AL- and PEG-based nanoparticles caused a significant reduction in the content of
all energy reserves: protein, glucose, and triglycerides. For instance, by increasing the
AL–acetamiprid concentration from LC30 to LC50, the glucose content was reduced to 33%,
and a 1.1-fold increase in PEG–acetamiprid concentration caused a 28% decrease in glucose
levels (Table 2).

Table 2. Effect of free and nanoencapsulated acetamiprid based on AL and PEG on macromolecules
in third-instar larvae of Xanthogaleruca luteola.

Bio-Assay Concentrations Protein (mg/dL) Glucose (mg/dL) Triglyceride (mg/dL)

Acetamiprid

Control 1.233 ± 0.0360 a 0.0933 ± 0.0047 a 1.8900 ± 0.0145 a

LC30 1.0900 ± 0.0030 b 0.0790 ± 0.0208 a 1.633 ± 0.2185 ab

LC50 1.0566 ± 0.0098 b 0.0733 ± 0.0317 b 1.5100 ± 0.0965 b

F-Value 10.94 49.80 5.04
Pr 0.0018 0.0001 0.0300

AL–acetamiprid

LC30 0.9700 ± 0.0057 b 0.0623 ± 0.0090 a 1.5557 ± 0.0431 a

LC50 0.9433 ± 0.0088 b 0.0433 ± 0.0083 b 1.1600 ± 0.0677 b

F-Value 2.19 29.51 17.65
Pr 0.0170 0.0001 0.0005
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Table 2. Cont.

Bio-Assay Concentrations Protein (mg/dL) Glucose (mg/dL) Triglyceride (mg/dL)

PEG–acetamiprid

LC30 0.8500 ± 0.0012 c 0.0690 ± 0.0008 a 1.433 ± 0.1185 ab

LC50 0.8366 ± 0.0098 c 0.0513 ± 0.0017 b 1.3000 ± 0.0765 b

F-Value 12.84 46.10 5.10
Pr 0.0019 0.0001 0.0300

In each separate column, the means with different superscript letters designate significant differences at p < 0.05
according to Tukey’s test.

3.4. Detoxifying Enzymes

The effects of acetamiprid and AL– and PEG–cetamiprid nanoparticles on the esterase
and GST activity of X. luteola are shown in Table 3. Both detoxifying enzymes’ content
was significantly decreased by using LC50 values of nanoparticles in comparison with the
control groups (Table 3).

Table 3. Effect of pure and nanoencapsulated acetamiprid on the activity of glutathione S-transferase
(GST) and esterase in third-instar larvae of Xanthogaleruca luteola.

Bio-Assay Concentrations Esterase (U/mg
Protein) GST (U/mg Protein)

Acetamiprid

Control 0.02300 ± 0.001 a 0.0853 ± 0.004 a

LC30 0.0065 ± 0.0015 b 0.06366 ± 0.002 ab

LC50 0.0001 ± 0.00001 b 0.05700 ± 0.001 b

F-Value 21.76 11.13
Pr 0.0003 0.0483

AL–acetamiprid

LC30 0.0010 ± 0.0001 b 0.0506 ± 0.0063 b

LC50 0.0001 ± 0.0000 c 0.0490 ± 0.0024 b

F-Value 28.13 22.87
Pr 0.0001 0.0005

PEG–acetamiprid

LC30 0.0018 ± 0.0001 b 0.0696 ± 0.0053 ab

LC50 0.0003 ± 0.0000 c 0.0580 ± 0.0021 b

F-Value 30.23 21.27
Pr 0.0001 0.0005

In each separate column, the means with different superscript letters designate significant differences at p < 0.05
according to Tukey’s test.

4. Discussion

Nanoencapsulation based on the controlled-release technique has the potential to
provide stable formulations that are more efficient [8]. The main objective of active material
nanoencapsulation is to maintain its properties and avoid deterioration [42]. The improve-
ment of toxicity effects and stability of insecticides by nanoencapsulated formulations
has been reported in recent studies. For example, nanoencapsulation of acetamiprid by
porous silica nanoparticles (Ace@MSNs) increases its insecticidal efficiency and decreases
the pesticide residue: testing LC50 value of nanoencapsulated acetamiprid against tea
aphids was three times lower than that of the commercial preparation, and the average
retained concentrations in tea leaves treated by acetamiprid were about 1.3 times those
in the nanoformulation [28]. In this study, it was found that the nanoencapsulation of ac-
etamiprid using coating materials AL and PEG enhanced the lethal and sublethal efficiency
of insecticide acetamiprid. The nanoparticles were prepared based on natural materials
AL and PEG, which were approved for agricultural practice and have eco-friendly fea-
tures [43–45]. Adak et al. [46] indicated that PEG-based nanoformulations of neonicotinoid
insecticide imidacloprid can be used for efficient pest management according to their high
solubilization power and low critical micelle concentration. Although the encapsulation
efficiency of PEG-based nanoformulations (60.0–97.9%) reported by Adak et al. [47] are
in accordance with present findings (90.1%), the loading capacity (6.8–60.0%) was lower
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than our finding (86.8%). In the other study, 95% encapsulation efficiency and 78% loading
capacity of a pyrethroid insecticide cypermethrin in AL-based nanoformulation were re-
ported [47], which was approximately in agreement with our findings (92.58% and 88.46%,
respectively). Mentioned differences may be due to different chemical compositions of
tested insecticides and their encapsulation methods. Furthermore, although the nanoscale
size measured in this study is consistent with data provided for nanoencapsulation of
other insecticides by the same polymers [46,47], changes in encapsulation methods can
give different-sized particles.

The nanoscale of synthesized AL– and PEG–acetamiprid in the present study, at-
tained by both TEM and DLS, were confirmed by those reported for the AL- and PEG-
encapsulated temephos and imidacloprid [48]. The nanoscale of the PEG-encapsulated
acetamiprid in the present study is also in good agreement with PEG-based encapsulated
cinnamon essential oil [49]. The expansion in the average diameter achieved by DLS
may be qualified by nanoparticle aggregation compared to the TEM results. According
to DLS, the average hydrodynamic diameter of AL–acetamiprid nanoparticles was larger
than the PEG–acetamiprid nanoparticle, which may be attributed to the solubility of ac-
etamiprid in an aqueous system [50]. Furthermore, characteristics of the synthesized AL–
and PEG–acetamiprid nanoparticles were also described by FTIR, in which the presence of
the insecticide in the nanoformulation was confirmed.

In this investigation, the nanoencapsulated formulations based on AL and PEG showed
higher toxicity against larvae of X. luteola after 24 h than acetamiprid. Takei et al. [51] indicated
that the polylactide microsphere is a promising capsulation agent for acetamiprid, in which
the pesticide release from microspheres was improved by adding poly-є-caprolactone, but
it has not been checked against insect pests or any other damaging agents. However,
similar to the present findings, the performance of nano-acetamiprid synthesized based
on poly-є-caprolactone against the pathogenic fungi Aspergillus niger was many-fold times
more effective than the typical commercial acetamiprid [30].

The enzymatic activity and energy reserves in the third-instar larvae of X. luteola feed
on elm leaf leaves treated by AL– and PEG–acetamiprid nanoparticles were reduced in this
study. Key roles of protein in insect digestion and energy conversion and metabolism have
been found [52,53]. For example, it was indicated that a reduction in protein content in
insect larvae treated with bio-pesticides could lead to decreased growth hormone levels [54].
In the present study, the protein content of X. luteola larvae was significantly decreased by
free and nanoencapsulated acetamiprid, in which PEG-based nanoencapsulated insecti-
cide was more efficient than others. Therefore, using such nanoencapsulated insecticides
can cause significant disruption in the function of proteins. As lipids provide reserve
energy after feeding and play a crucial role in intermediary metabolism, they are essential
macromolecules in insect physiology [55]. The triglyceride content of X. luteola larvae
was also reduced by both free and nanocapsulated formulations of acetamiprid, which
may be caused by variations in synthesis patterns along with hormonal dysfunction in its
metabolism [13]. Glucose, the key monosaccharide in insects, was also significantly reduced
in X. luteola larvae treated with AL– and PEG–acetamiprid nanoparticles. A decrease in
glucose content may be attributed to low feeding in treated larvae [56]. In general, the
reduction in protein, lipid, and glucose resources of insect pest larvae may affect survival
and reproduction parameters, including egg production, fecundity, and fertility, even in
later generations [57,58]. Esterases and glutathione S-transferases are detoxifying enzymes
that are involved in the falling of exogenous agents’ impacts [59]. The activity of these
detoxifying enzymes was decreased in larvae treated by both free and nanocapsulated
acetamiprid in the present study. It was also found that the activity of esterases and glu-
tathione S-transferases was more affected by AL– and PEG–acetamiprid nanoparticles than
by the pure-insecticide formulation. The low activity of these enzymes could be related to
the interruption of their production, causing more susceptibility to insect pests [60].

Generally, nanoencapsulated formulations can decrease the required concentration of
insecticide, resulting in low human threat and environmental pollution and a reduction
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in the cost of plant protection strategies. In this study, a nanoencapsulation technique
was developed to effectively produce AL- and PEG-nanoparticles. These nanoparticles
are low-cost and eco-friendly carriers in the controlled release of acetamiprid insecticide.
Although AL and PEG are non-toxic and safe for agricultural practice, their safety typically
increases by formulating microscopic particles [61]. Our findings displayed that the AL- and
PEG-based encapsulated acetamiprid has a higher toxicity than pure formulation against
X. luteola larvae. It can also be concluded that AL– and PEG–acetamiprid nanoparticles
with feasible application have high insecticidal effectiveness against X. luteola at much
lower concentrations than those required for non-encapsulated formulation. The specific
features of AL– and PEG–acetamiprid nanoparticles, including their ability to dissolve in
water and the augmentation of active ingredient efficiency, distinguish their promising
potential in the management of X. luteola. However, additional research is recommended to
check the possibility of loading conventional insecticide and other active agents in AL and
PEG and their toxicity to other insect pests. In addition, the slow release of insecticides can
lead to an increase in the resistance of the pest population, which should be considered.
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